The Advantages of Having it "On Tap"

Simple RF-Power Measurement

Making power measurements from nanowatts to 100 watts

is easy with these simple homebrewed instruments!

easuring RF power is central to almost everything that we do as radio amateurs and experimenters. Those applications range from simply measuring the power output of our transmitters to our workbench experimentations that call for measuring the LO us to directly measure signals of over power applied to the mixers within our 20 mW (+13 dBm) to less than 0.1 nW

power indicators.

The power-measuring system described here is based on a recently introduced IC from Analog Devices: the AD8307. The core of this system is a battery operated instrument that allows receivers. Even our receiver S meters are (-70 dBm). A tap circuit supplements the

power meter, extending the upper limit by 40 dB, allowing measurement of up to 100 W (+50 dBm).

The Power Meter

The cornerstone of the power-meter circuit shown in Figure 1 is an Analog Devices AD8307AN logarithmic amplifier IC, U1. Although you might consider the

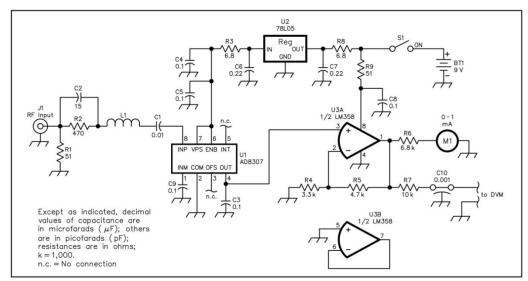
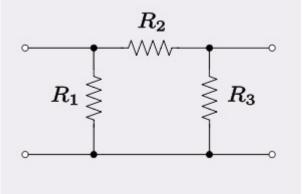


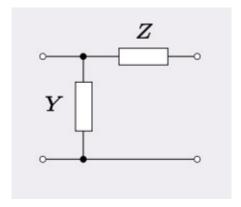
Figure 1—Schematic of the 1- to 500-MHz wattmeter. Unless otherwise specified, resistors are 1/4-W 5%-tolerance carboncomposition or metal-film units. Equivalent parts can be substituted; n.c. indicates no connection. Most parts are available from Kanga US; see Note 2.

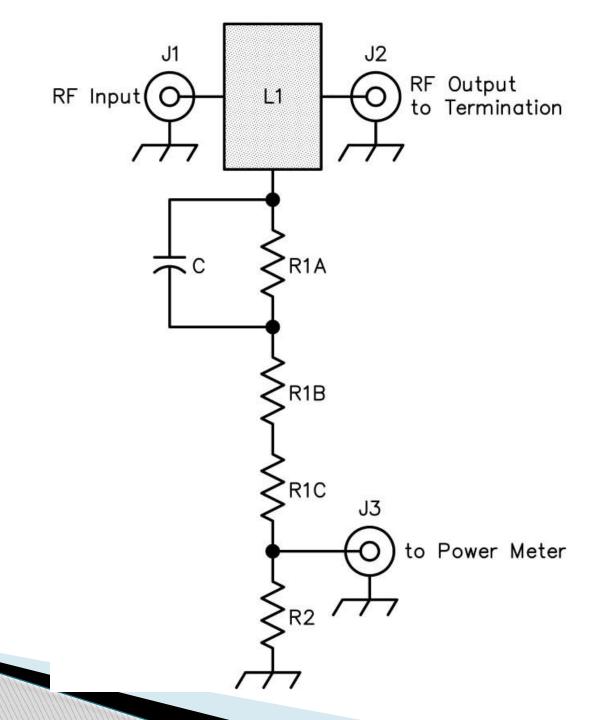
J1-N or BNC connector L1-1 turn of a C1 lead, 3/16-inch ID; see M1-0-15 V dc (RadioShack 22-410); see

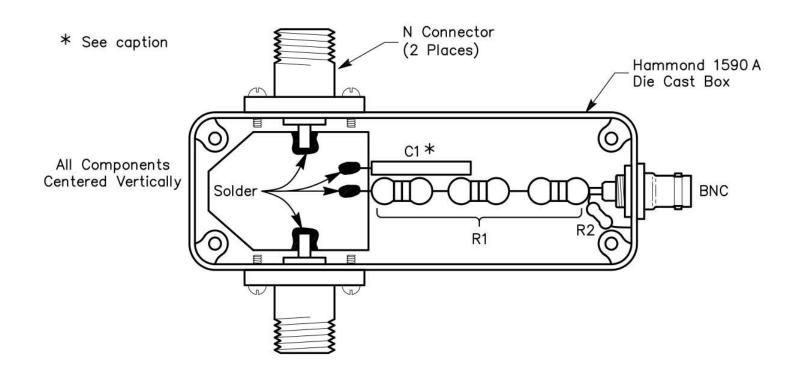
S1—SPST toggle U1-AD8307; see Note 1. U2-78L05 U3-LM358

Misc: See Note 2; copper-clad board, enclosure (Hammond 1590BB, RadioShack 270-238), hardware.


Resistive 40dB sampling tap


https://www.qsl.net/sz1a/download/build%20an%20rf%20power%20meter.pdf


Not a Simple Attenuator!


Pi attenuator

L attenuator

Sums!!

- ► 3x820=2460 Ohms
- ► 2460+25=2485 Ohms
- **2485**/ 25=99.4 (100)

More Sums!!

Power $=V^2/R$

Sampling 1/100th voltage 1/10,000th power

10dB=10 times

20dB=100 times

30dB = 1,000 times

40dB=10,000 times

Trap for Young Players-

- ▶ 40dB only valid for 50Ω input Impedance
- E.g. $1M\Omega$ input impedance,

Voltage division – 2510/50=50.2Power ratio -34dB

Why?

- Power measurements
- Frequency meter sampling
- Oscilloscope sampling

Costs:-

40dB Sampling Tap

Hammond 1590A Diecast box	1		£5.82		
RF Connectors N Type	2	£5.06	£10.12	SO239	£2.36
Sample output 50Ω BNC	1		£1.46		
820Ω Carbon Film Resistor	3	£0.02	£0.06		
51Ω Carbon Film Resistor	1		£0.03		
Brass Plate 1x1.25 inches	1	Donated			
M3 Bolts & Nuts A2 Stainless	8	£0.10	£0.76		
Total			£18.25		£10.49

Further info:

- https://www.qsl.net/sz1a/download/build%20an%20rf%20power%20 meter.pdf
- https://www.minicircuits.com/app/AN40-012.pdf
- http://www.ad5x.com/images/Articles/Tap50dbRevA.pdf

